Product information

User's Manual

Human BDNF ELISA

For the detection of BDNF in human serum, plasma, body fluids, tissue lysate or cell culture supernates.

BE69099

96

Storage:

2-8°C

RUO

For Research Use Only - Not for Use in Diagnostic Procedures.

1 INTRODUCTION

1.1 Intended Use

The IBL-America BDNF ELISA has been designed for the detection of BDNF in human serum, plasma, body fluids, tissue lysate or cell culture supernates. For research use only, not for use in diagnostic procedures.

1.2 Background

Brain-derived neurotrophic factor, also known as BDNF, is a prosurvival factor induced by cortical neurons that is necessary for survival of striatal neurons in the brain. BDNF is a member of the "neurotrophin" family of growth factors, which are related to the NGF. It acts on certain neurons of the central nervous system and the peripheral nervous system, helping to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses. In the brain, it is active in the hippocampus, cortex, and basal forebrain—areas vital to learning, memory, and higher thinking. Post mortem analysis has shown lowered levels of BDNF in the brain tissues of people with Alzheimer's disease.

2 PRINCIPLE OF THE TEST

This kit is based on a sandwich enzyme-linked immuno-sorbent assay technology. An analyte-specific polyclonal antibody is pre-coated onto 96-well plates. The biotin conjugated second antibody is used as detection antibody. The standards, test samples, and biotin conjugated detection antibody are added to the wells subsequently. After incubation period, the plate is washed. Avidin-Biotin-Peroxidase Complex is added and incubated. After washing with wash buffer the TMB substrate is added to visualize HRP enzymatic reaction. TMB is catalyzed by HRP to produce a blue color product that changes into yellow after adding acidic stop solution. The optical density of the yellow color is proportional to the analyte captured in plate. Read the O.D. absorbance at 450nm in a microtiterplate reader, and calculate the concentration of the analyte in the sample by taking into consideration the dilution factor of the sample.

3 WARNINGS AND PRECAUTIONS

- This kit is for research use only, not for use in diagnostic procedures.
- 2. Before the experiment, centrifuge each kit component for several minutes to bring down all reagents to the bottom of tubes.
- 3. It is recommended to measure each standard and sample in duplicate.
- 4. Do NOT let the plate completely dry at any time! Since the dry condition can inactivate the biological material on the plate.
- 5. Do not reuse pipette tips and tubes to avoid cross contamination.
- 6. Do not use the expired components or the components from different lot numbers.
- 7. To avoid the marginal effect of plate incubation for temperature differences (the marginal wells always get stronger reaction), it is recommended to equilibrate the ABC working solution and TMB substrate for at least 30 min at 37°C before adding to wells.
- 8. The TMB substrate (Kit Component 8) is colorless and transparent before use. If not, please contact us for replacement.

4 REAGENTS

4.1 Reagents provided

- 1. One 96-well microtiterplate pre-coated with anti-human BDNF antibody
- 2. Lyophilized human BDNF standards: 2 tubes (10 ng/ tube)
- 3. Sample / Standard diluent buffer: 30 ml
- 4. Biotin conjugated anti-human BDNF antibody (Concentrated): 130 μl. Dilution: 1:100
- 5. Antibody diluent buffer: 12 ml
- 6. Avidin-Biotin-Peroxidase Complex (ABC) (Concentrated): 130 μl. Dilution: 1:100
- 7. ABC diluent buffer: 12 ml
- 8. TMB substrate: 10 ml
- 9. Stop solution: 10 ml
- 10. Wash buffer (25X): 30 ml

Note: Reconstitute standards and test samples with kit component 3.

4.2 Materials required but not provided

- 1. 37°C incubator
- 2. Microtiterplate reader (wavelength: 450nm)
- 3. Precise pipette and disposable pipette tips
- 4. Automated plate washer
- ELISA shaker
- 6. 1.5 ml Eppendorf tubes
- 7. Plate cover
- 8. Absorbent filter papers
- 9. Plastic or glass container with volume of above 1 L

4.3 Storage Conditions / Expiration

Store at 4°C for 6 months, or at -20°C for 12 months.

4.4 Preparation of sample and reagents

1. Sample

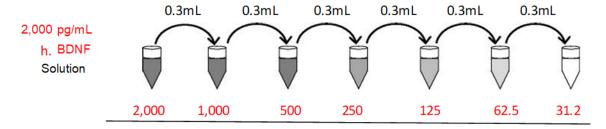
Isolate the test samples soon after collecting, then, analyze immediately (within 2 hours). Or aliquot and store at -20°C for long term. Avoid multiple freeze-thaw cycles.

- ♦ Body fluids, tissue lysates and cell culture supernatants: Centrifuge to remove precipitate, analyze immediately or aliquot and store at -20°C.
- ♦ **Serum:** Coagulate the serum at room temperature (about 4 hours). Centrifuge at approximately 1000 x g for 15 min. Analyze the serum immediately or aliquot and store at -20°C.
- ♦ Plasma: Collect plasma with citrate, heparin or EDTA as the anticoagulant. Centrifuge for 15 min at 2-8°C at 1500 x g within 30 min of collection. For eliminating the platelet effect, suggesting that further centrifugation for 15 min at 2-8°C at 10000 x g. Analyze immediately or aliquot and store frozen at -20°C.
- Note: 1. Coagulate blood samples completely, then, centrifuge, and avoid hemolysis and particles.
 - 2. NaN₃ cannot be used as test sample preservative, since it is the inhibitor for HRP.

>> Sample Dilution Guideline

End user should estimate the concentration of the target protein in the test sample first, and select a proper dilution factor to make the diluted target protein concentration falls the optimal detection range of the kit. Dilute the sample with the provided diluent buffer, and several trials may be necessary in practice. The test sample must be well mixed with the diluent buffer.

- ♦ **High target protein concentration (20-200 ng/ml)**: Dilution: 1:100. i.e. Add 1μl of sample into 99 μl of Sample / Standard diluent buffer (Kit Component 3).
- ♦ **Medium target protein concentration (2-20 ng/ml)**: Dilution: 1:10. i.e. Add 10 μl of sample into 90μl of Sample / Standard diluent buffer (Kit Component 3).
- \$\displays \text{Low target protein concentration (31.2-2000 pg/ml)}\$: Dilution: 1:2. i.e. Add 50 μl of sample into 50 μl of Sample / Standard diluent buffer (Kit Component 3).
- ♦ Very low target protein concentration (≤31.2 pg/ml): Unnecessary to dilute, or dilute at 1:2.


2. Wash buffer

Dilute the concentrated Wash buffer 25-fold (1:25) with distilled water (i.e. add 30ml of concentrated wash buffer into 720 ml of distilled water).

3. Standard

Reconstitution of the lyophilized human BDNF standard (Kit Component 2): standard solution should be prepared no more than 2 hours prior to the experiment. Two tubes of standard are included in each kit. Use one tube for each experiment. (Note: Do not dilute the standard directly in the plate)

- a. 10,000 pg/ml of standard solution: Add **1 ml** of Sample / Standard diluent buffer (Kit Component 3) into one Standard (Kit Component 2) tube, keep the tube at room temperature for 10 min and mix thoroughly.
- b. 2000 pg/ml of standard solution: Add **0.2 ml** of the above 10 ng/ml standard solution into **0.8 ml** sample diluent buffer (Kit Component 3) and mix thoroughly.
- c. $1000 \text{ pg/ml} \rightarrow 31.2 \text{ pg/ml}$ of standard solutions: Label 6 Eppendorf tubes with 1000 pg/ml, 500 pg/ml, 250 pg/ml, 125 pg/ml,

BDNF Protein Standards (pg/mL)

Note: The standard solutions are best used within 2 hours. The 10,000 pg/ml standard solution should be used within 12 hours. Or store at -20°C for up to 48 hours. Avoid repeated freeze-thaw cycles.

- **4. Preparation of Biotin conjugated anti-human BDNF antibody (Kit Component 4) working solution:** prepare no more than 2 hours before the experiment.
- a. Calculate the total volume of the working solution: 0.1 ml / well \times quantity of wells. (Allow 0.1-0.2 ml more than the total volume)
- b. Dilute the Biotin conjugated anti-human BDNF antibody (Kit Component 4) with Antibody diluent buffer (Kit Component 5) at 1:100 and mix thoroughly. i.e. Add 1 μ l of Biotin conjugated anti-human BDNF antibody into 99 μ l of Antibody diluent buffer.

- 5. Preparation of Avidin-Biotin-Peroxidase Complex (ABC) (Kit Component 6) working solution: prepare no more than 1 hour before the experiment.
- a. Calculate the total volume of the working solution: 0.1 ml / well x quantity of wells. (Allow 0.1 0.2 ml more than the total volume)
- b. Dilute the Avidin-Biotin-Peroxidase Complex (ABC) (Kit Component 6) with ABC diluent buffer (Kit Component 7) at 1:100 and mix thoroughly. i.e. Add 1 µl of Avidin-Biotin-Peroxidase Complex (ABC) into 99 µl of ABC diluent buffer.

5 ASSAY PROCEDURE

5.1 General Remarks

Before adding to wells, equilibrate the ABC working solution and TMB substrate (Kit Component 8) for at least 30 minutes at 37°C. It is recommended to plot a standard curve for each test.

5.2 Test Procedure

- 1. Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate.
- 2. Aliquot 0.1 ml of 2000 pg/ml, 1000 pg/ml, 500 pg/ml, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.2 pg/ml standard solutions into the standard wells.
- 3. Add 0.1 ml of Sample / Standard diluent buffer (Kit Component 3) into the control (zero) well.
- Add 0.1 ml of properly diluted sample (Human serum, plasma, body fluids, tissue lysates or cell culture supernatants) into test sample wells.
- 5. Seal the plate with a cover and incubate at 37°C for 90 min.
- 6. Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. **Do NOT let the wells completely dry at any time. Do not wash plate!**
- 7. Add 0.1 ml of Biotin conjugated anti-human BDNF antibody work solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall.
- 8. Seal the plate with a cover and incubate at 37°C for 60 min.
- 9. Remove the cover, and wash plate 3 times with Wash buffer (Kit Component 10) using one of the following methods:

 Manual Washing: Discard the solution in the plate without touching the side walls. Clap the plate on absorbent filter papers or other absorbent material. Fill each well completely with Wash buffer (Kit Component 10) buffer and vortex mildly on ELISA shaker for 2 min, then aspirate contents from the plate, and clap the plate on absorbent filter papers or other absorbent material. Repeat this procedure two more times for a total of THREE washes.
 - <u>Automated Washing:</u> Aspirate all wells, then wash plate **THREE times** with Wash buffer (Kit Component 10) (overfilling wells with the buffer). After the final wash, invert plate, and clap the plate on absorbent filter papers or other absorbent material. It is recommended that the washer be set for a soaking time of 1 min or shaking.
- 10. Add 0.1 ml of ABC working solution into each well, cover the plate and incubate at 37°C for 30 min.
- 11. Remove the cover and wash plate 5 times with Wash buffer (Kit Component 10), and each time let the wash buffer stay in the wells for 1-2 min. (See Step 9 for plate wash method).
- 12. Add 0.1 ml of TMB substrate (Kit Component 8) into each well, cover the plate and incubate at 37°C in dark within 30 min. (**Note:** This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated Human BDNF standard solutions), the other wells show no obvious color.
- 13. Add 0.1 ml of Stop solution (Kit Component 9) into each well and mix thoroughly. The color changes into yellow immediately.
- 14. Read the O.D. absorbance at 450 nm in a microtiterplate reader within 30 min after adding the stop solution.

5.3 Results

For calculation, (the relative O.D.₄₅₀) = (the O.D.₄₅₀ of each well) – (the O.D.₄₅₀ of Zero well). The standard curve can be plotted as the relative O.D.₄₅₀ of each standard solution (Y) vs. the respective concentration of the standard solution (X). The human BDNF concentration of the samples can be interpolated from the standard curve.

Note: If the samples measured were diluted, multiply the dilution factor to the concentrations from interpolation to obtain the concentration before dilution.

6 QUALITY CONTROL

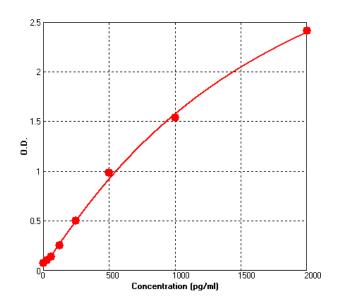
Good laboratory practice requires that controls be run with each calibration curve. A statistically significant number of controls should be assayed to establish mean values and acceptable ranges to assure proper performance. It is recommended to use controls according to state and federal regulations. The use of controls is advised to assure the day to day validity of results. It is also recommended to make use of national or international Quality Assessment programs in order to ensure the accuracy of the results. Employ appropriate statistical methods for analyzing control values and trends. If the results of the assay do not fit to the established acceptable ranges of control materials, results of unknowns should be considered invalid.

In this case, please check the following technical areas: Pipetting and timing devices; photometer, expiration dates of reagents, storage and incubation conditions, aspiration and washing methods. After checking the above mentioned items without finding any error contact your distributor or IBL-America directly.

7 PERFORMANCE CHARACTERISTICS

7.1 Range

31.2 pg/ml - 2000 pg/ml


7.2 Sensitivity

< 2 pg/ml

7.3 Typical Data & Standard Curve

Results of a typical standard run of a human BDNF ELISA Kit are shown below. **This standard curve was generated at our lab for demonstration purpose only.** Each user should obtain their own standard curve as per experiment. (N/A=not applicable)

Х	pg/ml	0	31.2	62.5	125	250	500	1000	2000
Υ	OD450	0.073	0.103	0.135	0.251	0.504	0.983	1.538	2.411

7.4 References:

- 1. Binder DK, Scharfman HE (September 2004). "Brain-derived Neurotrophic Factor". Growth Factors 22 (3): 123-31.
- 2. Maisonpierre PC, Le Beau MM, Espinosa R et al. (July 1991). "Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations". Genomics 10 (3): 558–68.
- 3. Maisonpierre PC, Le Beau MM, Espinosa R et al. (July 1991). "Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations". Genomics 10 (3): 558–68.
- 4. Yamada K, Nabeshima T (April 2003). "Brain-derived neurotrophic factor/TrkB signaling in memory processes". J. Pharmacol. Sci. 91 (4): 267–70.

8 ORDERING INFORMATION

This kit is manufactured for Immuno-Biological Laboratories, Inc. (IBL-America). For ordering information, please contact:

Immuno-Biological Laboratories, Inc. (IBL-America)

8201 Central Ave NE, Suite P Minneapolis, MN 55432 Toll Free: (888) 523-1246 Fax: (763) 780-2988 www.ibl-america.com info@ibl-america.com